Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways.

نویسندگان

  • Akiko Maruyama-Nakashita
  • Eri Inoue
  • Akiko Watanabe-Takahashi
  • Tomoyuki Yamaya
  • Hideki Takahashi
چکیده

Sulfate is a macronutrient required for cell growth and development. Arabidopsis has two high-affinity sulfate transporters (SULTR1;1 and SULTR1;2) that represent the sulfate uptake activities at the root surface. Sulfur limitation (-S) response relevant to the function of SULTR1;2 was elucidated in this study. We have isolated a novel T-DNA insertion allele defective in the SULTR1;2 sulfate transporter. This mutant, sel1-10, is allelic with the sel1 mutants identified previously in a screen for increased tolerance to selenate, a toxic analog of sulfate (Shibagaki et al., 2002). The abundance of SULTR1;1 mRNA was significantly increased in the sel1-10 mutant; however, this compensatory up-regulation of SULTR1;1 was not sufficient to restore the growth. The sulfate content of the mutant was 10% to 20% of the wild type, suggesting that induction of SULTR1;1 is not fully complementing the function of SULTR1;2 and that SULTR1;2 serves as the major facilitator for the acquisition of sulfate in Arabidopsis roots. Transcriptome analysis of approximately 8,000 Arabidopsis genes in the sel1-10 mutant suggested that dysfunction of the SULTR1;2 transporter can mimic general -S symptoms. Hierarchal clustering of sulfur responsive genes in the wild type and mutant indicated that sulfate uptake, reductive sulfur assimilation, and turnover of secondary sulfur metabolites are activated under -S. The profiles of -S-responsive genes further suggested induction of genes that may alleviate oxidative damage and generation of reactive oxygen species caused by shortage of glutathione.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana.

Plant metabolism is a complex set of processes that produce a wide diversity of foods, woods, and medicines. With the genome sequences of Arabidopsis and rice in hands, postgenomics studies integrating all "omics" sciences can depict precise pictures of a whole-cellular process. Here, we present, to our knowledge, the first report of investigation for gene-to-metabolite networks regulating sulf...

متن کامل

Transcriptome analyses give insights into selenium-stress responses and selenium tolerance mechanisms in Arabidopsis.

Selenate is chemically similar to sulfate and can be taken up and assimilated by plants via the same transporters and enzymes. In contrast to many other organisms, selenium (Se) has not been shown to be essential for higher plants. In excess, Se is toxic and restricts development. Both Se deficiency and toxicity pose problems worldwide. To obtain better insights into the effects of Se on plant ...

متن کامل

Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants.

Sulfur is an essential macro-element in plant and animal nutrition. Plants assimilate inorganic sulfate into two sulfur-containing amino acids, cysteine and methionine. Low supply of sulfate leads to decreased sulfur pools within plant tissues. As sulfur-related metabolites represent an integral part of plant metabolism with multiple interactions, sulfur deficiency stress induces a number of ad...

متن کامل

Transcriptome profiling of Shewanella oneidensis gene expression following exposure to acidic and alkaline pH.

The molecular response of Shewanella oneidensis MR-1 to variations in extracellular pH was investigated based on genomewide gene expression profiling. Microarray analysis revealed that cells elicited both general and specific transcriptome responses when challenged with environmental acid (pH 4) or base (pH 10) conditions over a 60-min period. Global responses included the differential expressi...

متن کامل

Fungal Infection Alters Phosphate Level and Phosphatase Profiles in Arabidopsis

Phosphorus (P), in the form of phosphate ion (Pi), is a vital element contributing in biomolecule structures, metabolic reactions, signaling pathways and energy transfer within the living cells. The objective of the present study was to assess the influence of fungal infection on Pi metabolism in compare to the effects of phosphate stress in Arabidopsis. Quantification of total P contents showe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 132 2  شماره 

صفحات  -

تاریخ انتشار 2003